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ABSTRACT
Semi-supervised learning via learning from limited quanti-
ties of labeled data has been investigated as an alternative to
supervised counterparts. Maximizing knowledge gains from
copious unlabeled data benefit semi-supervised learning set-
tings. Moreover, learning multiple tasks within the same model
further improves model generalizability. We propose a novel
multitask learning model, namely MultiMix, which jointly
learns disease classification and anatomical segmentation in a
sparingly supervised manner, while preserving explainability
through bridge saliency between the two tasks. Our exten-
sive experimentation with varied quantities of labeled data in
the training sets justify the effectiveness of our multitasking
model for the classification of pneumonia and segmentation of
lungs from chest X-ray images. Moreover, both in-domain and
cross-domain evaluations across the tasks further showcase the
potential of our model to adapt to challenging generalization
scenarios.1

Index Terms— Classification, Segmentation, Multitask-
ing, Semi-Supervised Learning, Data Augmentation, Saliency
Bridge, Chest X-Ray, Lungs, Pneumonia

1. INTRODUCTION

Learning-based medical image analysis has become widespread
with the advent of deep learning, especially with Convolutional
Neural Networks (CNNs). However, deep learning models
are mostly reliant on large pools of labeled data. Especially
in the medical domain, obtaining labeled images is often in-
feasible, as annotation requires domain expertise and manual
labor, making it difficult to train large-scale deep learning
models. To address the limited labeled data problem in image
analysis tasks, Semi-Supervised Learning (SSL) has been
gaining attention. In SSL, unlabeled examples are leveraged in
combination with labeled examples to maximize information
gains [1]. Furthermore, MultiTask Learning (MTL) has been

?Authors contributed equally
1Code, pretrained models, and additional details are available at

https://github.com/ayaanzhaque/MultiMix

Fig. 1. Schematic of the MultiMix model: (classification)
Using predictions on unlabeled weakly augmented images,
pseudo-labels are generated with confidence, and loss is com-
puted with these labels and the strongly augmented versions of
those images. (segmentation) Generated saliency maps from
the class predictions are concatenated via the saliency bridge
module to guide the decoder for the final segmentations.

researched for improving the generalizability of any models
[2]. MTL is defined as optimizing more than one loss in a
single model such that multiple related tasks are performed
through shared representation learning.

Semi-supervised multitask learning is still under-explored
in medical imaging. Some work in this direction has recently
been published [3, 4, 5]. A saliency map enables the analysis
of model predictions through the visualization of meaningful
visual features [6]. While any deep learning model can be in-
vestigated for better explainability via the saliency map, to our
knowledge, bridge saliency between the two shared tasks in a
single model has not yet been explored in the literature. We
show that combining a bridge-saliency module and a simple
yet effective semi-supervised learning method in a multitask-
ing setting can yield improved and consistent performance
across multiple domains.
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Our main contributions may be summarized as follows:

• A novel semi-supervised method exploiting consistency
augmentation and multi-source data for jointly learn-
ing diagnostic classification and anatomical structure
segmentation.

• An innovative saliency bridge module connecting the
two related tasks within the same model.

• Extensive experimentation with varied quantities of la-
beled data from different sources (both in- and cross-
domain) demonstrating the improved generalizability of
our model.

2. MULTIMIX

To formulate the problem, we assume unknown data distribu-
tions p(Xs, Y ) over images Xs and segmentation labels Y ,
and p(Xc, C) over images Xc and class labels C. We also
assume access to labeled training sets Ds

l sampled i.i.d. from
p(Xs, Y ) and Dc

l sampled i.i.d. from p(Xc, C), as well as
unlabeled training sets Ds

u sampled i.i.d. from p(Xs) and Dc
u

sampled i.i.d. from p(Xc) after marginalizing out Y and C,
respectively. In the proposed MultiMix model (Fig. 1), we
utilize a U-Net-like encoder-decoder architecture [7] for im-
age deconstruction and reconstruction. The encoder functions
similarly to a standard convolutional neural network. Using
pooling layers followed by fully-connected layers, the encoder
outputs a classification prediction through the classification
branch.

For sparingly-supervised classification, we leverage data
augmentation and pseudo-labeling. Inspired by [8], we take
an unlabeled image and perform two separate augmentations.
A single unlabeled image is first weakly augmented, and from
that weakly augmented version of the image, a pseudo-label is
assumed based on the prediction from the current state of the
model. Secondly, the same unlabeled image is then augmented
strongly, and a loss is calculated with the pseudo-label from the
weakly augmented image and the strongly augmented image
itself. Note that this image-label pair is retained only if the
confidence with which the model generates the pseudo-label
is above a tuned threshold, which prevents the model from
learning from incorrect and poor labels. Weak augmentations
consist of standard augmentations and are applied to labeled
data as well, while strongly augmented images are augmented
by randomly applying heavy augmentations from a pool of
augmentations.

The classification loss is therefore calculated as

Lc = Ll(ĉl, cl) + λLu(ĉs, argmax(ĉw) ≥ t), (1)

where Ll is the supervised loss, which uses cross-entropy, ĉl
denotes the predictions for input xcl with the corresponding
reference labels cl and ĉs are the classification predictions on
strongly augmented images, parameter λ is the unsupervised

Table 1. Details of the datasets used for training and testing.

mode Dataset Total Normal Abnormal Train Val Test

in-domain JSRT 247 – – 111 13 123
CheX 5,856 4273 1583 5216 16 624

cross-domain MCU 138 – – 93 10 35
NIHX 4185 2754 1431 – – 4185

classification loss weight, Lu is the unsupervised loss, and
argmax(ĉw) ≥ t is the pseudo-labeling function, where ĉw
are the predictions on the weakly augmented images and t is
the pseudo-labeling threshold.

We generate saliency maps based on the predicted classes
using the gradients of the encoder. While the segmentation
images do not necessarily represent pneumonia, the classifi-
cation task, the generated maps highlight the lungs, creating
images at the final segmentation resolution. We hypothesize
that these saliency maps can be used to guide the segmentation
during the decoder phase, yielding improved segmentation
while learning from limited labeled data. In our algorithm,
the generated saliency maps are concatenated with the input
images, downsampled, and added to the feature maps input
to the first decoder stage. Moreover, to ensure consistency,
we compute the KL divergence between segmentation predic-
tions for labeled and unlabeled examples. This penalizes the
model from making predictions that are increasingly different
than those of the labeled data, which helps the model fit more
appropriately for the unlabeled data.

The segmentation loss is therefore:

Ls = αLl(ŷl, yl) + βLu(ŷl, ŷu), (2)

where α is the segmentation loss weight, which uses dice
loss, ŷl are the labeled segmentation image predictions, yl are
the corresponding labels, β is the unsupervised segmentation
loss weight, and ŷu are the unlabeled segmentation image
predictions.

3. EXPERIMENTAL EVALUATION

3.1. Implementation Details

Data: The models were trained and tested for the combined
classification and segmentation tasks using data from two
different sources: pneumonia detection (CheX) [9] and JSRT
[10]. Furthermore, we used the Montgomery County chest X-
rays (MCU) [11] and a subset of the NIH chest X-ray dataset
(NIHX) [12] for cross-domain evaluation. Table 1 presents the
details of the datasets used in our experiments.

Inputs: All the images were normalized and resized to
256 × 256 × 1 before feeding them to the models. Model
Architecture: As the segmentation backbone, we used a U-
Net-like encoder-decoder network with skip connections [7],
and branched out by adding two pooling layers and an FC
layer for the classification predictions. We implemented the
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Fig. 2. Box plots of Dice scores from baselines and MultiMix: in-domain (left) and cross-domain (right).

models using Python with the PyTorch framework using a
NVIDIA K80 GPU. Baselines: As baselines, we used the
U-Net and encoder-only (Enc) networks separately for the
single-task models both in supervised and semi-supervised
schemes. Using the same backbone network, we also trained
a multitasking U-Net with the described classification branch
(UMTL). We incorporated an INorm, LReLU, and dropout at
every convolutional block. Moreover, we performed ablation
experiments to observe the impact of each of the key pieces
in our proposed model: single-task EncSSL (encoder with the
SSL algorithm), UMTLS(UMTL with saliency bridge). Train-
ing: All the models (single-task or multitask) were trained on
varying |Ds

l | (10, 50, full), and |Dc
l | (100, 1000, full). Each

experiment was repeated 5 times. Hyper-parameters: We
used the Adam optimizer with adaptive learning rates of 0.1
every 8 epochs and an initial learning rate of 0.0001. A neg-
ative slope of 0.2 is applied to LReLU, and dropout is set to
0.25. We set t = 0.7, λ = 0.25, α = 5.0 (for smaller |Ds

l |)
and β = 0.01. Each model was trained with a mini-batch size
of 10. Evaluation (in-domain and cross-domain): For clas-
sification, along with the overall accuracy (Acc), we recorded
the class-wise F1 scores (F1-N for normal and F1-P for pneu-
monia). To evaluate the segmentation performances, the Dice
similarity (DS), average Hausdorff distance (HD), and struc-
tural similarity measure (SSIM) scores were used.

3.2. Results and Discussion

In-Domain: Our models were trained on the CheX and JSRT
datasets. As revealed by the in-domain results (Table 2), model
performance is improved with the subsequent inclusion of
each of the novel components on the backbone network. For

JSRT (in-domain) MCU (cross-domain)
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Fig. 3. Boundary visualization of the predicted segmentations
in a chest X-ray depicts the superiority of MultiMix. Color
code: green (reference), red (predicted).

classification, our semi-supervised algorithm has significantly
improved performance compared to the baseline models, as
with min |Dc

l |, and it even outperforms the fully-supervised
baseline. For segmentation, the saliency bridge, our primary
addition, yields large improvements over the baseline U-Net
and U-MTL. Again, with min |Ds

l |, a 30% performance gain
over its counterparts proves the effectiveness of our MultiMix
model. Fig. 2 depicts better consistency by our proposed
model over the baselines. For fair and proper comparison,
we use the same backbone U-Net and the same classification
branch for all the models. The segmented lung boundary



Table 2. Classification and segmentation performance comparison with varying label proportions. Best fully-supervised scores
are underlined and best semi-supervised scores are bolded.

Model |Dc
l | |Ds

l |
In-Domain Cross-Domain

Classification Segmentation Classification Segmentation

Acc F1-N F1-P DS HD SSIM Acc F1-N F1-P DS HD SSIM

U-N
et

— 10 — — — 0.634 2.899 0.810 — — — 0.555 8.691 0.680
— 50 — — — 0.855 0.341 0.904 — — — 0.763 2.895 0.870
— Full — — — 0.915 0.104 0.929 — — — 0.838 1.414 0.929

Enc
100 — 0.732 0.424 0.806 — — — 0.352 0.070 0.506 — — —

1000 — 0.773 0.546 0.842 — — — 0.390 0.192 0.508 — — —
Full — 0.737 0.534 0.838 — — — 0.434 0.296 0.524 — — —

Enc
SSL 100 — 0.780 0.570 0.844 — — — 0.402 0.222 0.510 — — —

1000 — 0.822 0.692 0.876 — — — 0.486 0.380 0.530 — — —
Full — 0.817 0.680 0.872 — — — 0.510 0.472 0.538 — — —

UM
TL

100 10 0.707 0.443 0.797 0.626 4.323 0.908 0.350 0.045 0.510 0.586 7.156 0.836
100 50 0.655 0.683 0.853 0.647 4.733 0.881 0.363 0.085 0.515 0.580 7.013 0.825
100 Full 0.706 0.416 0.804 0.696 3.908 0.911 0.342 0.015 0.508 0.607 6.398 0.863

1000 10 0.750 0.490 0.825 0.761 3.050 0.926 0.413 0.263 0.507 0.676 3.268 0.833
1000 50 0.749 0.510 0.833 0.768 2.606 0.938 0.400 0.203 0.513 0.704 3.232 0.896
1000 Full 0.747 0.530 0.840 0.759 2.955 0.930 0.430 0.293 0.517 0.638 3.893 0.890
Full 10 0.744 0.515 0.828 0.909 0.903 0.521 0.455 0.365 0.525 0.737 0.917 0.879
Full 50 0.738 0.438 0.820 0.930 0.444 0.954 0.444 0.332 0.522 0.868 0.742 0.894
Full Full 0.731 0.447 0.822 0.932 0.372 0.957 0.443 0.328 0.520 0.854 0.866 0.792

UM
TLS

100 10 0.704 0.358 0.806 0.922 4.005 0.891 0.344 0.006 0.510 0.797 5.754 0.807
100 50 0.701 0.336 0.796 0.926 4.393 0.894 0.364 0.098 0.506 0.828 6.412 0.826
100 Full 0.713 0.442 0.794 0.931 3.983 0.920 0.342 0.008 0.510 0.838 6.321 0.834

1000 10 0.740 0.482 0.828 0.948 2.546 0.924 0.378 0.138 0.512 0.844 3.921 0.854
1000 50 0.771 0.566 0.844 0.965 2.083 0.941 0.392 0.186 0.514 0.883 3.017 0.888
1000 Full 0.742 0.497 0.830 0.962 1.758 0.935 0.370 0.130 0.510 0.898 4.150 0.905
Full 10 0.747 0.500 0.830 0.955 0.268 0.936 0.470 0.398 0.524 0.881 0.862 0.888
Full 50 0.737 0.433 0.820 0.972 0.560 0.953 0.413 0.270 0.510 0.917 0.658 0.919
Full Full 0.723 0.413 0.817 0.974 0.327 0.957 0.433 0.315 0.513 0.916 0.882 0.921

M
ult

iM
ix

100 10 0.800 0.594 0.856 0.954 0.695 0.938 0.440 0.164 0.510 0.857 1.227 0.863
100 50 0.824 0.613 0.854 0.971 0.681 0.951 0.370 0.036 0.510 0.889 1.061 0.890
100 Full 0.792 0.593 0.854 0.973 0.636 0.954 0.500 0.300 0.510 0.899 0.647 0.906

1000 10 0.817 0.647 0.865 0.954 0.902 0.932 0.520 0.386 0.530 0.862 1.307 0.878
1000 50 0.825 0.650 0.860 0.970 0.811 0.950 0.540 0.500 0.536 0.912 1.293 0.907
1000 Full 0.830 0.586 0.856 0.974 0.643 0.953 0.570 0.620 0.510 0.936 0.803 0.932
Full 10 0.840 0.730 0.880 0.954 0.621 0.935 0.550 0.430 0.534 0.886 0.746 0.894
Full 50 0.854 0.760 0.890 0.972 0.692 0.956 0.560 0.570 0.550 0.935 0.515 0.930
Full Full 0.843 0.740 0.890 0.975 0.528 0.960 0.520 0.490 0.550 0.943 0.417 0.937

visualizations also show good agreement with the reference
masks by MultiMix over other models (Fig. 3).

Cross-Domain: We validated our models on two cross-
domain datasets, the NIHX and MCU datasets, for classifica-
tion and segmentation respectively. The cross-domain results
(Table 2) are as promising as the in-domain ones. The classifi-
cation accuracy is increased with the introduction of MultiMix
models. Due to the significant differences in the NIHX and
CheX datasets, the scores are not as good as the in-domain
results. Yet our model performs better than the other models.
For segmentation, our MultiMix model again achieves better
scores in all different metrics, with improved consistency over
the baselines (Fig. 2).

4. CONCLUSIONS

We have presented a novel sparingly supervised, multitask
learning model (MultiMix) for jointly learning classification
and segmentation tasks. Through the incorporation of consis-
tency augmentation and a novel saliency bridge module, Mul-
tiMix performs improved and consistent pneumonia detection
and lung segmentation when trained on multi-source datasets,
varying labeled data. Extensive experimentation using four
different chest X-ray datasets demonstrated the effectiveness
of MultiMix both in in-domain and cross-domain evaluations,
for either tasks; indeed, outperforming a number of baselines.
Our future work will focus on further improving MultiMix’s
cross-domain performance.
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