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ABSTRACT

CT image quality is reliant on radiation dose, as low dose CT (LDCT) scans contain increased noise in images.
This compromises the diagnostic performance on such scans. Therefore, it is desirable to perform Image Quality
Assessment (IQA) prior to diagnostic use of CT scans. Often, image quality is assessed with full-reference methods,
where a LDCT is algorithmically compared against its full dose counterpart. However due to health concerns,
acquiring full dose CT scans is challenging and not desirable. As an alternative, non-reference IQA (NR-IQA)
can be performed. Moreover, IQA at the pixel level is important, as most IQA methods only provide a global
assessment, which means localized regions of interest cannot be specifically assessed. A solution for localized-IQA
is to produce visually-interpretable quality maps. Deep learning methods could be employed by leveraging
computer vision techniques, such as Self-Supervised learning (SSL). In this work, we propose Noise2Quality
(N2Q)—a novel self-supervised, non-reference, pixel-wise image quality assessment model to predict IQA maps
from LDCTs. Self-supervised dose level prediction as an auxiliary task further improves the model performance.
Our experimental evaluation both qualitatively and quantitatively demonstrates the effectiveness of the model in
accurately predicting IQA maps over various baselines. *
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1. INTRODUCTION

Computed Tomography is one of the most fundamental medical imaging modalities, but its effectiveness is heavily
reliant on the radiation dose supplied. However, research has confirmed that high radiation dose can be harmful
for patients and operators.! Low dose CT (LDCT) is an alternative to full dose CT (FDCT), but contains higher
quantities of noise that compromises image quality. Certain details required for diagnostic performance may
be hidden by such noise. In order to ensure the acquired images are at expected quality, it is imperative to
perform image quality assessment (IQA), such that medical practitioners can determine whether certain scans are
appropriate for diagnostic analysis.

Full-reference IQA (FR-IQA) methods are generally mathematical calculations which output a metric to
evaluate IQA. These conventional IQA metrics include SSIM, PSNR, MSE, FSIM, etc. However, if we want to
scan patients at low dose, we will not have full dose CT (FDCT) references, meaning FR-IQA metrics cannot be
applied. To address this challenge, non-reference IQA (NR-IQA) metrics have been employed, but most of these
methods rely on hand-crafted feature engineering.? Recently, deep learning NR-IQA methods have been explored,
both in the general computer vision®* and medical imaging fields.

Most IQA methods perform global assessments, providing a score for the entire image. More practical for
CT imaging diagnostics would be to measure the quality of a specific organ or region-of-interest (ROI) through
pixel-wise local assessment. While scores can be assigned by masking off a certain region, it would be more
beneficial to visualize each section of the scan in a single image. Such an assessment can be performed with an
image quality assessment map (IQAM)® where pixel intensity denotes the quality of the pixel.

Prior deep learning work in IQA exists in both the general domain and the CT domain.®® Patwari et al.
proposes a standard CNN which predicts conventional IQA-metrics for a given LDCT input. Li et al.” uses
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a CNN to predict subjective metrics graded by experienced radiologists instead of using conventional FR-IQA
metrics. Imran et al.® performs blind global-IQA prediction by training a model to predict various FR-IQA
metrics from a given LDCT input. They also propose a noise level estimation auxiliary task. However, these
methods perform global score prediction instead of localized or map assessment. For map assessment, there are
few in the general domain,” and for CT, even fewer are available.!? Pan et al.” uses a generative network to input
distorted images and predict an IQA map that correlates to human vision and perception. They additionally have
a second metric which regresses the generated map into a singular global score. Gao et al.!? does not predict
image quality maps, it only predicts localized scores for specific ROIs and organs. Thus, general interpretations of
IQA for all regions of an image cannot be predicted and visualized at once. To our best knowledge, no methods
predict CT image quality maps.

Self-Supervised Learning (SSL) is a form of unsupervised learning which produces synthetic labels from the
data itself for a separate task.!! Traditionally, self-supervised learning is performed in a two-step, pre-training
process. However, it can be performed simultaneously with the downstream task. In this work, we jointly train
our main task and SSL as an auxiliary task in a multitask learning framework. This sort of self-supervision can
be seen in many CT denoising methods.'? 13

In this paper, we propose Noise2Quality (N2Q), a novel NR-IQA method which leverages self-supervised
learning to predict structural similarity index map (SSIM) from LDCT images. Our contributions are as follows:

e A novel deep learning approach for local IQA through image quality map prediction, as opposed to only
global score prediction, by simulating multiple doses and producing ground-truth SSIM maps

e A novel self-supervised regularization dose-level estimation task to improve representation learning through
multitask learning

e Experimentation proving the effectiveness of each components of our approach at accurately predicting
image quality maps for localized IQA.

2. METHODS
2.1 Data

We primarily collect abdomen scans from the publicly available Mayo CT data.'* !5 The dataset includes CT
scans originally acquired at routine dose level (full dose) as well as simulated quarter dose images reconstructed
through inserting Poisson noise into each projection dataset. We use 20 full dose and the corresponding quarter
(25%) dose CT scans. We then select the middle 50 slices from each of the scans. The dataset is split into
train—10 scans (500 slices) and test—10 scans (500 slices).

2.2 Image Quality Map Generation and Dose Simulation

Our dataset originally only contains one set of LDCT and FDCT images (quarter dose). To evaluate IQA,
different dose levels must be present in a single training and testing set. Thus, we synthesize arbitrary dose
images by scaling the zero-mean independent noise from 25% to five additional dose levels: 5%, 10%, 50%, and
75%, described in Imran et al.®

Image quality assessment maps are the reference images in our training procedure. To generate image quality
maps, we use SSIM map as our proxy reference. The SSIM maps are produced by calculating an SSIM value
between the LDCT and FDCT for each pixel using a window of 11 x 11.5 Thus, in an SSIM IQA map, each
pixel intensity represents the SSIM score at that pixel. When all the scores are collected and visualized as an
image, ROIs and structures can be interpreted for their image quality.
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Figure 1. Schematic of the proposed N2Q model. A high pass filter of the input LDCT image is calculated and concatenated
with the input image before passing to the model. The model predicts the SSIM map for local IQA as well as self-supervised
dose level prediction, which is performed through the classification branch.
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Figure 2. 6 different doses (5%, 10%, 25%, 50%, 75%, full) of a single scan are displayed. 25% and full dose is captioned in
blue as they are provided by Mayo dataset.
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Table 1. Results of various architectures and training procedures confirm the superiority of our proposed method (N2Q)
and validates the importance of each component. The best scores are bolded.

Metrics AE  RED-CNN U-Net U-HPF U-Con U-SSL N2Q

SSIM  0.6761 0.7250 0.7448 0.7381 0.7484 0.7572 0.7664
MSE  0.1033 0.0594 0.0804 0.0979 0.0759 0.0669 0.0686
NRMSE 0.3226 0.2434 0.2830 0.3237 0.2794 0.2505 0.2437

2.3 Noise2Quality

We use a simple encoder/decoder convolutional neural network (CNN) architecture (see Fig. 1). More recent
and improved architectures can be utilized, but to isolate the importance of our training procedures, we employ
standard baselines. Each input LDCT image slice has a corresponding SSIM Map and our model aims to predict
SSIM Maps that are as similar as possible to the ground-truth. We use entire slices instead of image patches,
yielding more elegant training over other methods which perform IQA map prediction.’ Instead of just using the
LDCT image as our input, we use a high-pass filter (HPF) and LDCT concatenated input. The high-pass filter
channel provides additional context for both modules of the model, improving its performance.

We simultaneously train the model to predict the dose level of the input LDCT image as a self-supervised
auxiliary task. After the encoder, which is similar to a standard CNN, we add an average pooling layer and
a fully connected layer to make dose level prediction as a 5 class classification task—five classes for each dose
level. Each LDCT can be assigned a label based on its dose. This is a self-supervised task because the dose
level information is freely available. Training in a multitask learning framework has been shown to improve
performance, reduce overfitting, and improve generalization because the model must fit to two separate tasks
and data representations.'® Moreover, information learned from one task can assist in the performance of the
other task. This method is does not fit the traditional self-supervised definition from general computer vision,
where a network is trained on a subset of unlabeled images. The dose-level estimation task can be described as
unsupervised, as all the labels for each image are synthetically generated.

Therefore, our loss has two components: IQA map estimation and dose level prediction. For quality map
prediction, we compute a mean-squared error loss (MSE) between predicted quality map and the ground-truth
SSIM map. For dose level prediction, we use multi-class cross-entropy (CE) loss, as we formalized our classification
problem as a 5-class task. We employ a standard MSE loss instead of a hybrid loss, which have been used in
recent CT imaging tasks,'” to further isolate the importance of our primary contributions and training procedure.

Our final model objective can be represented as:
L(yagaca 6) :LMSE(gay) +O“CCVE(éaC)a (1)

where Ljssg is the standard MSE loss, Log is the cross-entropy loss, y is the ground-truth SSIM map, ¥ is
the predicted IQA map, c is the reference dose level, and ¢ is the predicted dose level. A weight of « is assigned
to the dose level prediction task.

3. RESULTS

We experimented with different architectures and training procedures. As baselines, we used a U-Ne an
Autoencoder (U-net without skip-connections), and a RED-CNN,? which is an autoencoder without downsampling,
or constant convolutions of 96 filters. In our proposed approach and ablation experiments, we trained U-HPF—U-
Net with only the HPF input, U-Con—U-Net trained with a concatenated HPF and LDCT input, U-SSL—U-Net
trained with the dose level estimation task, and N2Q—U-Net trained on concatenated input and SSL.
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Table 1 displays the performance of our various architectures and training procedures. For architectures,
the U-Net has the strongest overall performance compared to the standard autoencoder and RED-CNN. When
trained with only the high-pass filter as the input, the model performance is lower than with LDCT as the input.
However, when the HPF is concatenated with the in the image, the performance improves over with only LDCT
input. Finally, our self-supervised dose level prediction improves the performance even further, as when it is
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Figure 3. Visual comparison of the predicted IQA map demonstrates strong qualitative improvements from our proposed
N2Q over the baseline models.
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trained with either LDCT only or the concatenated input, it outperforms its counterpart without SSL. The table
overall confirms the importance of each of our contributions.

Fig. 3 shows the predictions of various models on LDCT images. The brighter pixels in the IQA map denote
better quality. Each component yields improved performance over its counterpart, and N2Q has the highest
similarity with the reference scan. While visually the pixel-intensities and image contrast are not entirely accurate
to the ground-truth, as the models tend to underestimate image quality, for the purposes of visual IQA, our
model matches well to the ground-truth for indicating high-quality and low-quality areas. This also explains why
the SSIM evaluation metric, which is based on luminosity and contrast, has relatively low scores across the board.

4. CONCLUSIONS

We have presented, N2Q), a self-supervised image quality assessment model which predicts SSIM image quality
maps for local, pixel-wise assessment. We have introduced a novel self-supervised dose level prediction auxiliary
task to improve performance through multitask learning and regularize training. Our proposed method indeed
outperforms a number of baselines at producing accurate quality maps. While most works perform global-
IQA assessment in medical imaging, we focus on predicting localized-IQA, which is more relevant for clinical
applications. Our future research will experiment with more baseline and state-of-the-art methods, as well as
using different metrics for IQA maps, such as GSSIM. For the localized and organ-specific quality estimation,
organ segmentation will be leveraged. That will enable us to perform more focused and practical image quality
assessment in low dose abdominal CT images.
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